
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Изотермическому сжатию идеального газа, количество вещества которого постоянно, в координатах (p, V) соответствует график, показанный на рисунке, обозначенном буквой:

2. В таблице представлено изменение с течением времени координаты материальной точки, движущейся с постоянным ускорением вдоль оси Ox.

Момент времени <i>t</i> , с	0	1	2	3
Координата x , м	10	15	30	55

Проекция начальной скорости v_{0x} движения точки на ось Ox равна:

- 1) 0 m/c
- 2) 0.5 m/c
- 3) 1 m/c
- 4) 2 m/c

5) 3 m/c

3. Почтовый голубь дважды пролетел путь из пункта A в пункт B, двигаясь с одной и той же скоростью относительно воздуха. В первом случае, в безветренную погоду, голубь преодолел путь AB за промежуток времени $\Delta t_1 = 36$ мин. Во втором случае, при встречном ветре, скорость которого была постоянной, голубь пролетел этот путь за промежуток времени $\Delta t_2 = 54$ мин.

Если бы ветер был попутным, то путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

- 1) 18 мин
- 2) 21 мин
- 3) 24 мин
- 4) 27 мин
- 5) 30 мин

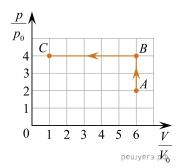
4. На поверхности Земли на тело действует сила тяготения, модуль которой $F_1 = 144$ Н. На это тело, когда оно находится на высоте $h = 2R_3$ (R_3 — радиус Земли) от поверхности Земли, действует сила тяготения, модуль которой F_2 равен:

- 1) 16 H
- 2) 24 H
- 3) 36 H
- 4) 48 H
- 5) 72 H

5. Цепь массы m = 0.80 кг и длины l = 2.0 м лежит на гладком горизонтальном столе. Минимальная работа A_{min} , которую необходимо совершить для того, чтобы поднять цепь за ее середину на высоту, при которой она не будет касаться стола, равна:

- 1) 4,0 Дж
- 2) 8,0 Дж
- 3) 12 Дж
- 4) 16 Дж
- 5) 20 Дж

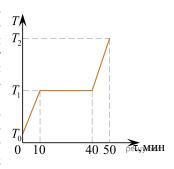
6. При спуске в шахту на каждые 12 м атмосферное давление возрастает на 133 Па. Если на поверхности Земли атмосферное давление $p_1 = 101,3$ кПа, то в шахте на глубине h = 360 м давление p_2 равно:


7. Газ, начальная температура которого $T_1 = 300$ °C, нагрели на Δt = 300 К. Конечная температура T_2 газа равна:

- 1) 54 K
- 2) 327 K 3) 600 K
- 4) 873 K
- 5) 1146 K

8. Если давление p_0 насыщенного водяного пара при некоторой температуре больше парциального давления р водяного пара в воздухе при этой же температуре в n = 3,1 раза, то относительная влажность ϕ воздуха равна:

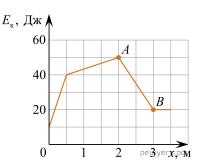
- 1) 25 %
- 2) 32 %
- 3) 45 %
- 4) 64 %
- 5) 70 %


9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:

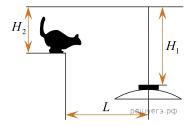
1)
$$U_C > U_B > U_A$$
 2) $U_B > U_A > U_C$ 3) $U_A > U_B > U_C$
4) $U_C = U_B > U_A$ 5) $U_C > U_B = U_A$

- 10. Физической величиной, измеряемой в вольтах, является:
 - 1) потенциал
 - 2) работа тока
- 3) сила тока
- 4) магнитный поток
- 5) электрический заряд

11. Алюминиевый слиток при температуре T_0 поместили в плавильную печь. На рисунке представлена зависимость температуры T алюминия от времени τ . При нагревании от начальной температуры T_0 до температуры плавления T_1 алюминиевому слитку было передано количество теплоты $Q_1 = 18$ кДж. Если алюминию ежесекундно передаётся одинаковое количество теплоты, то для его плавления при температуре T_1 алюминию необходимо передать количество теплоты Q_2 равное ... кДж.



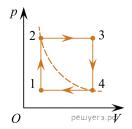
12. Два груза массы $m_1 = 0,4$ кг и $m_2 = 0,2$ кг, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под дей-



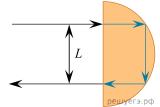
ствием сил, модули которых зависят от времени по закону: $F_1 = At$ и $F_2 = 2At$, где A = 1,5 H/c. Если модуль сил упругости нити в момент разрыва $F_{\rm vin}$ = 20 H, то нить разорвется в момент времени t от начала движения, равный ... \mathbf{c} .

13. На рисунке приведён график зависимости кинетической энергии E_{κ} тела, движущегося вдоль оси Ox, от координаты x. На участке AB модуль результирующей сил, приложенных к телу, равен ... Н.

14. Находящийся на шкафу кот массой $m_1=3,0$ кг запрыгивает на светильник, расположенный на расстоянии L=100 см от шкафа (см. рис.). Начальная скорость кота направлена горизонтально. Светильник массой $m_2=2,0$ кг подвешен на невесомом нерастяжимом шнуре на расстоянии H_1 =140 см от потолка. Расстояние от потолка до шкафа $H_2=95$ см. Если прене-

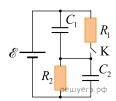


бречь размерами кота и светильника, то максимальное отклонение светильника с котом от положения равновесия в горизонтальном направлении будет равно ... см. *Примечание*. Колебания светильника с котом нельзя считать гармоническими.


15. Зависимость координаты x пружинного маятника, совершающего колебания вдоль горизонтальной оси Ox, от времени t имеет вид $x(t)=A\sin(\omega t+\phi_0)$, где $\omega=\frac{17\pi}{18}~{\rm pag}/c,~\phi_0=\frac{2\pi}{9}~{\rm pag}$. Если в момент времени t=1,0 с потенциальная энергия пружины $E_{\pi}=9$,0 мДж, то полная механическая энергия E маятника равна ... мДж.

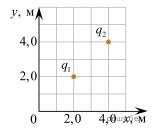
16. Два одинаковых одноименно заряженных металлических шарика находятся в вакууме на расстоянии r=10 см друг от друга. Шарики привели в соприкосновение, а затем развели на прежнее расстояние. Если модуль заряда первого шарика до соприкосновения $|q_1|=1$ нКл, а модуль сил электростатического взаимодействия шариков после соприкосновения F=3,6 мкH, то модуль заряда $|q_2|$ второго шарика до соприкосновения равен ... нКл.

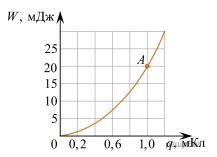
17. Идеальный одноатомный газ, количество вещества которого $\upsilon=0,400$ моль, совершил замкнутый цикл, точки 2 и 4 которого лежат на одной изотерме. Участки 1–2 и 3–4 этого цикла являются изохорами, а участки 2–3 и 4–1 — изобарами (см. рис). Работа, совершённая силами давления газа за цикл, A=332 Дж. Если в точке 3 температура газа $T_3=1156$ К, то чему в точке 1 равна температура T_1 газа? Ответ приведите в Кельвинах.


18. Узкий параллельный пучок света падает по нормали на плоскую поверхность прозрачного $\left(n=\frac{4}{3}\right)$ полуцилиндра радиусом

 $R=5\sqrt{3}$ см выходит из неё параллельно падающему пучку света (см. рис.). Если от момента входа в полуцилиндр до момента выхода из него потери энергии пучка не происходит, то минимальное расстояние L между падающим и выходящим пучками света равно...см.

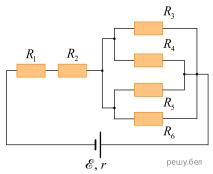
Примечание. Полуцилиндр — это тело, образованное рассечением цилиндра плоскостью, в которой лежит его ось симметрии.


- 19. Два находящихся в вакууме маленьких заряженных шарика, заряды которых $q_1 = q_2 = 40$ нКл массой m = 8,0 мг каждый подвешены в одной точке на лёгких шёлковых нитях одинаковой длины. Если шарики разошлись так, что угол между нитями составил $\alpha = 90^{\circ}$, то длина каждой нити l равна ... см.
- **20.** Две частицы массами $m_1 = m_2 = 0,800 \cdot 10^{-12} \ \mathrm{Kr},$ заряды которых $q_1 = q_2 = 1,00 \cdot 10^{-10} \, \, \mathrm{K}$ л, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние $l=100\,$ см между частицами остаётся постоянным. Модули скоростей частиц $v_1 = v_2 = 20,0 \; rac{ ext{M}}{c},$ а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мTл.
- **21.** Протон, начальная скорость которого $v_0 = 0$ м/с, ускоряется разностью потенциалов $\varphi_1 - \varphi_2 = 0,45 \text{ kB}$ и влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции. Если модуль вектора магнитной индукции магнитного поля B = 0.30 Тл, то радиус R окружности, по которой протон будет двигаться в магнитном поле, равен ... мм. (Ответ округлите до целого числа мм.)
- 22. В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1 = 40$ мк Φ , $C_2 = 120$ мкФ, ЭДС источника тока $\epsilon = 90,0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2 = 2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа


K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в нача-

ле координат равен ... $\frac{D}{M}$

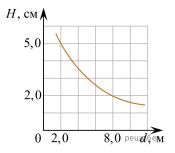

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке А на графике соответствует напряжение U на конденсаторе, равное ... В.

- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31.7 \text{ кВт} \cdot \text{ч}$, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- 26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r = 0.50 Ом, и резистора сопротивлением R = 10 Ом. Если сила тока в цепи I = 2,0 A, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om}.$$


В резисторе R_6 выделяется тепловая мощность $P_6=90.0$ Вт. Если внутреннее сопротивление источника тока r=4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

